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Abstract
A method is presented for automatically adjusting the input parameters of a lithography simulator to more

accurately match a given set of experimental conditions.  Using contrast curves, swing curves or focus-exposure
matrices, simulation parameters are automatically modified in a search to minimize the difference between the
simulated results and the experimental data.  The algorithms used are described, as well as their robustness and
sensitivity to experimental noise.  Results of these tuning procedures are presented and the tuned set of parameters
is shown to give good quantitative agreement of simulation to experiment.
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I.  Introduction
For many applications, lithography simulation has proven extremely effective at predicting or explaining

important lithographic trends, providing insight and direction for problem solving, and extrapolating lithographic
technology into the future.  For some applications, however, the usefulness of lithography simulation depends on
its ability to match experimental results for a specific process.  When simulation and experiment do not match,
there are three possible reasons.  First, the experimental results could be wrong due to setup, process, and/or
measurement errors.  Second, the models used in the simulator may not adequately describe the physical realities
present in the experiment.  And third, the input parameters used for the simulation may not adequately describe
the actual experimental conditions.  Of these three, incorrect input parameters is by far the most common source
of simulation to experiment mismatch in optical lithography modeling.

Recently, a systematic approach to matching simulation to experiment for a given process, called “tuning” the
model, was proposed [1-3].  In this paper, the approaches described earlier will be expanded and automated.  By
examining contrast curve, swing curve (reflectivity, dose to clear and critical dimension), and focus-exposure
matrix data sets, a variety of tunable lithographic simulation parameters can be estimated.  A systematic approach
to calibrating specific parameters will be provided and many examples given for both conventional and
chemically amplified resists.

Many input parameters are known based on relative, uncalibrated measurements made in the fab.  For
example, the resist thickness value that the typical lithographer measures is usually not an absolute measure of
resist thickness.  This is due to the fact that most fabs have no means available to calibrate their resist thickness
measurements to any absolute standard.  In fact, fab measurements of resist thickness do not need to be absolute
for the purposes of manufacturing – a relative resist thickness is all that is necessary.  In the case of the swing
curve, this inaccurate measurement results in a shift in the phase of experimental swing curve data relative to the
simulation.  The model’s phase can be shifted to account for the measurement method by adjusting the resist’s
index of refraction setting in the simulation.

As another example, experimental results often do not match up with the simulated results due to inaccurate
dose calibration.  Like the resist thickness measurement tool, dose meters do not usually yield absolute
measurements and are really only needed to provide relative measurements (dose matching among steppers, etc.).



In fact, dose meters can vary as much as 20% from meter to meter.  Therefore, the meter used to dose check the
stepper used in the experiment typically does not match the meter used when the resist company measured their
Dill ABC parameters.  Because of this, dose to size and dose to clear values can be off between simulation and
experiment.  The model can be adjusted in dose to match the experiment by changing the C parameter
(representing the exposure rate constant) of the Dill ABC parameters to match the lithographer’s process and
account for the difference in dose calibration.

As a third very common example, hotplate temperatures during the post-exposure bake (PEB) of chemically
amplified resists can have a very significant impact on feature size.  However, the hotplate “set point” and the
actual wafer time/temperature profile can be quite different [4].  Calibration between hotplates in a fab is a
necessary exercise.  Likewise, calibrating the virtual hotplate of the simulator to the hotplate used in the fab is
also needed.  This can be done by adjusting one or more of the rate constants for the chemical reactions that occur
during PEB.

Development parameters are another source of potential mismatch between simulation and experiment.
Develop model parameters are often measured by the resist manufacturer for their recommended process.
However, the process used in the fab is often different, sometimes in subtle ways like a different temperature,
other times in obvious ways like the use of a different developer.  Tuning the development parameters can
account for these differences.  Other parameters can also be adjusted for fine tuning of the model such as lens
aberrations and the CD metrology method.

This paper will seek to define a procedure whereby a lithographer can use an automated parameter adjustment
method to tune the parameters of the model to a given set of experimental data.  Then, using the adjusted
parameters, one can accurately model many other photolithography processes (for example, the same resist on
differing substrates, using different masks, different stepper settings, and under other conditions) thereby saving
time, money, and making use of the full potential of the modeling tool.  These techniques will be demonstrated
through the use of PROLITH v7.0 and Klarity ProDATA with the AutoTuneTM module.

II.  Theory
A starting point for lithographic simulation calibration is usually to run a simulation and manually change

some parameters in a way that the match between real and simulated data improves.  For this method to work a
good understanding of the model theory and a good intuition is required by the user.  The user must also decide
on a criterion for a good match.  A commonly practiced way to decide on the quality of the match is plotting the
two curves in one graph and eyeballing the difference.  The results become very subjective.

Auto-tuning introduces a systematic and automated approach for both varying simulation parameters and
evaluating the quality of the match.  It also opens the door for varying multiple simulation parameters at once,
which is difficult to do properly when done manually.

The basis for an auto-tuning algorithm is the metric for the difference between the real and the simulated data.
It determines how well the agreement is between the two curves.  A standard approach for this can be taken from
the domain of data modeling.  It uses the “least-squares” merit function
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as a metric for the goodness of fit between data and model.  Here N is the number of data points, {yi ,xi} is the set
of experimental data points, a is the set of adjustable parameters, σi is the noise estimate for measured point i, and
y(xi,a) is the model simulated function for point i.  χ2 evaluates to smaller values for more agreement and to larger
numbers for less agreement between the real and simulated data.  The goal is to find simulation parameters, which
minimize χ2.  A related merit function is the root-mean-squared (RMS) error function.
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Minimizing χ2 also minimizes Σ but using Σ allows comparison of fits between datasets of different sizes.  In the
case of a reflectivity swing curve χ2 would be obtained by subtracting the simulated reflectivity values from the
measured values at each given resist thickness and adding up all squared differences.

The second component of auto-tuning is the algorithm that finds those simulation parameters that cause χ2 to
reach a minimal value.  This problem can be approached in different ways and again the domain of data modeling
offers well established solutions.  This paper will consider two algorithms.  Both of them converge to a local
minimum within the given parmeter ranges.  They cannot find a global minimum that is located on the other side
of a maximum from the current parameter set guess.  Therefore, a reasonable initial guess for the parameters is
required.

The first algorithm is called the grid method.  It takes as an input a range for each of the simulation
parameters that are subject to optimization (variable parameters) and a fixed value for all the remaining simulation
parameters (fixed parameters).  In the first step we generate M equally spaced points for each of the N variable
parameters.  As a consequence we have MN different sets of simulation parameters that can be used for a
simulation.  These sets correspond to an N-dimensional grid with M points in each dimension.  All of the sets
have their parameters within the required ranges.  In the second step we pick a starting set (initially the middle of
the grid) and run simulations for the starting set and its closest neighbor sets in the grid (3N simulations).  Each of
the simulations results in a value for χ2.  If the parameter set with the smallest χ2 is the starting set, the algorithm
is finished.  If a different set has the smallest χ2, this set becomes the new starting set and step 2 gets repeated.
The desired set of simulation parameters is found when the algorithm stops repeating step 2.

This algorithm can be varied in many ways in order to achieve performance enhancements.  One variation is
the two-step grid method, running the grid method twice in a row.  The first time it uses the input ranges as given
and finds the optimum (minimum χ2).  The second time it takes the result from the first run and repeats the
calculations within smaller ranges that have been specified around the result from the first run.  In this way more
accuracy can be achieved without unnecessary simulations in areas of little interest.

The second algorithm is a variation of the Levenberg-Marquardt (L-M) method [5], which is a well-known
algorithm from the domain of data modeling.  The inputs are a first guess for the parameters that will be
optimized and fixed values for all remaining parameters.  The algorithm assumes that χ2 is quadratic with respect
to each parameter and can be computed at any neighboring parameter set (a + δ) using a Taylor series expansion.
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where H is the Hessian matrix (defined below).  If equation 3 is valid locally then the location of any minimum
relative to the current set of parameters can be solved from the matrix equation.
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Equation 4 is applied iteratively to improve the current guess of the optimized parameter set.  In the rare cases
were equation 4 results in a larger χ2 than the current value, the Levenberg-Marquardt routine seamlessly switches
to a steepest-descent algorithm that guarantees χ2 improvement by modifying the diagonal elements of the
Hessian matrix H.  Convergence is based upon successive iterations yielding a non-significant improvement in χ2.

This algorithm is a robust iterative approach that improves the variable simulation parameters with fast
convergence.  However, it assumes that the partial derivatives (equations 5 and 6) of the modeling function are
known.  For the type of data discussed in this paper the partial derivatives with respect to each fitting parameter
are too complex to calculate analytically.  Therefore, a finite difference approximation to each partial derivative is
used and constitutes the bulk of the computation time for the algorithm.

In most cases the L-M method is the better choice between the two algorithms.  It converges faster and
requires fewer simulations per iteration, which makes a noticeable difference in performance.  However, the grid
method offers a very robust alternative, because the algorithm’s basic concept does not depend upon partial
derivatives.  This can be useful when the parameters that are tuned have nontrivial correlations (see below).

A typical state of the art resist model has between 10 and 20 parameters.  How one should approach fitting
lithographic data largely depends upon what is the desired goal from the fitting process.  If simple data fitting for
one particular dataset is desired then adding parameters to the list of adjustable parameters until a satisfactory fit
is achieved is reasonable.  However, if comparison of the resist parameters between two different datasets or
extendibility of the optimized resist parameter set to predict future lithographic results is desired, then a more
judicious, physically based choice of adjustable fitting parameters is required.

Choosing which parameters to adjust for data fitting requires some understanding of the interaction of these
parameters with each other and the type of data being fit.  First, some resist parameters affect only certain types of
output data.  For instance, the resist develop rate does not change the resist reflectivity.  Choosing to fit
reflectivity data by varying any parameter other than the optical parameters (A + B and refractive index) results in
much slower convergence at best and failure of the algorithm to converge at worst.  In either case the “optimized
value” of the resist develop rate obtained from this fit will be no better than the original value.  A further
discussion of parameters effect the various data types will be given in the example calibrations section.

A more subtle issue for parameter choice originates from inter-parameter correlation.  Some resist parameters
show mild to severe correlation with each other when fitting lithographic data.  Increasing one parameter can be
offset by decreasing or increasing another parameter while achieving a similar if not equal χ2.  In mathematical
terms these parameters are either non-orthogonal to each other in the extreme case or the data set is mildly
“under-determined” in the less extreme case.  The under-determined data set does not cover enough process space
to significantly distinguish the various solutions obtainable.  Severe correlation is easily found in the two Dill
parameters A and B, the bleachable and unbleachable absorbance parameters.  In all but the most extreme
conditions (very high exposure dose or very thick resists) it is difficult to distinguish between these two
absorbance parameters using Resist CD data.  Figure 1 shows a resist CD swing curve simulation for several
values of A and B using a typical I-Line resist model.  For all resist thickness values below 1000nm the four
curves are fairly indistinguishable.  The values were chosen by first changing A from the original value (0.8) and
then increasing B until a reasonable match was found.  Clearly with any measurement noise it would be
impossible to determine the correct values of A and B from this type of data.

A useful way to view parameter pair correlations for a particular dataset is to plot χ2 in a contour plot, while
varying the two parameters of interest.  Figures 2 and 3 show the correlation plots for a mildly correlated and an
uncorrelated parameter pair resulting from focus-exposure matrix data.  In Figure 2 the Dill C parameter is shown
to be correlated with the Development N (Mack model contrast-like parameter).  Although a minimum is found
for this data set, the resulting χ2 contour resembles a shallow valley oriented diagonally.  Changes in either



parameter independently result in a larger χ2 but a small increase in C coupled with a small increase in N results
in an equivalent χ2.  Figure 3 shows that for the same dataset the Dill C parameter is not correlated with the
diffusivity parameter (given by the logarithm of the Arrhenius coefficient, ln(ADiffusivity)).  The χ2 contour shows a
definite single optimal solution.  For noisy data the affect of parameter correlation becomes more of an issue since
the difference between near degenerate solutions must be greater than the noise level to definitively say one
solution is better than the other.  Parameter correlation does not reduce the quality of the fit, χ2, but rather it
reduces the confidence in the resulting parameters.

III.  Example Calibrations
When testing data fitting routines the success of any algorithm will depend upon its ability to fit data in the

presence of experimental anomalies such as random noise and/or missing data points.  To test the previously
described calibration algorithms, “experimental” data was generated from known solutions by adding noise to
simulated data and throwing away points at random.  This adds two of the common complexities found in real
data yet maintains the known answer underlying the ”experimental” data.  The quality of the fit can then be
judged based upon not only the goodness of fit but also upon how close the optimized parameters are to the “true”
values.

In generating the test cases, three different resist models were employed, each representing typical resists
from I-Line (Shipley SPR 500), DUV (Shipley UV6) and 193nm (Sumitomo PAR710).  These resists were
chosen for their wide variation in parameter sets and general familiarity throughout the semiconductor industry.
The input resist parameters for each resist are given in Table 1.  The types of data generated were CD Swing
curves, Contrast Curves, and Focus-Exposure matrix .  Experimental noise was added to the datasets using
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where Rndu() is a uniform random number generator with range –1.0 < Rndu() < 1.0.  The first term of each
equation represents a measurement noise and the second term introduces a dynamic noise representative of a
process error (e.g., coating non-uniformity).

The most basic calibration experiment involves swing curve data.  This can be in the form of resist
reflectivity, Dose-to-Clear or resist CD as a function of resist thickness.  In general swing curve data derived from
resist CD at constant dose is the most accessible and accurate type of swing curve data.  Consequently, we shall
specifically address this type of swing curve, though the parameter calibration methodology would be similar
using reflectivity or Dose-to-Clear data.  As discussed in the introduction, CD swing curve data is useful for
removing two of the most common errors in matching simulation to experiments: inconsistent thickness
measurement techniques and the dose calibration of imaging tools.  The goal is to offset all of the dose calibration
or systematic thickness errors by modifying two or three of the resist parameters [1], effectively eliminating the
simulation mismatch.

The shape and response of swing curve data is most directly affected by the resist refractive index (n),
absorbance (A and B) and the resist exposure rate constant C.  Figure 4 shows a CD swing test case generated
from the SPR 500 resist model in Table 1.  Approximately 7.4 nm of RMS noise was added to the simulated



points using equation 7.  Also shown in Figure 4 are the simulation results using incorrect values of A, C and
resist refractive index.  Using the Levenberg-Marquardt algorithm, the three parameters were adjusted in 5
iterations to achieve the agreement shown in Figure 5.  The RMS error between the fit and the noisy data was 6.5,
which is in good agreement with the amount of noise originally added.  The “true” parameter, original starting
point and converged parameters are given in Table 2.  Again, the converged parameters show good agreement
with the original correct parameter set.

An interesting exercise is to run through the calibration procedure as a function of the added noise level.  The
same set of simulated data with added noise and resist parameter calibration was performed 5-10 times at each
noise level.  The RMS error for parameter calibration was calculated using the randomly generated sets at each
noise level.  The resulting parameter calibration error is shown in Figure 6 as a function of the added noise level.
As can be seen the expected error in calibrated parameters gets progressively worse with increasing noise level.
Even so, the relative maximum error in both A and C is approximately 10% for the highest noise level added.
This 30nm RMS CD noise level is much worse than what one would expect to see in practice.  The accuracy in
the refractive index calibration on a relative scale by comparison is even less at under 0.2% error for the 30nm
RMS CD error.

The second type of experimental data that is useful for parameter calibration is contrast curves.  The
remaining resist thickness after develop is measured as a function of open field exposure dose.  From this type of
data, several develop parameters are easily calibrated.  Among them is the minimum develop rate, the threshold
PAC concentration for the Mack model type resists, and the developer contrast-like parameter.  Figures 7 and 8
show the results of calibrating these develop parameters for the I-Line resist SPR-500 and the DUV resist UV-6.
The data for calibration was obtained by adding noise to known simulation results.  The original and resulting
calibrated parameters are likewise given in Tables 3 and 4.  Note that the parameter correlation of development
contrast and dissolution inhibition is quite strong for contrast curves [6].

Whereas swing curve data is well suited for the calibration of the optical parameters, and contrast curves are
amenable to the calibration of several develop parameters, focus-exposure matrix data is sensitive to most of the
10-20 resist parameters.  Consequently a wider range of resist parameters may be considered adjustable to achieve
a good match between experiments and simulation.  With so many parameters, the issues of parameter correlation
as discussed earlier must be considered.  Tables 5 and 6 list the most important parameters for FE matrix
calibration as well as a general guideline for the correlation level between these parameters.  Table 5 describes the
parameters most often used for conventional positive tone resists and Table 6 lists the parameters for chemically
amplified positive tone resists.  By eliminating the parameters which show large correlation effects with other
parameters the list of parameters to calibrate is drastically reduced.  The corollary is that it is only possible to
calibrate this limited number of parameters simultaneously with any degree of confidence.  When two particular
parameters are correlated one can choose to calibrate either one.  It is logical to calibrate the parameter that is not
already known with some degree of certainty.

From this list, three parameters (C, the diffusivity, and develop contrast) were chosen for calibration using the
same test case procedure and FE matrix data.  The chemically amplified DUV and 193nm resists given in Table 1
were both chosen for this test.  The results of this calibration is shown in Figures 9 and 10 and Tables 7 and 8.

V.  Conclusions
A method has been presented for automatically adjusting the input parameters of a lithography simulator to

more accurately match a given set of experimental conditions.  Using contrast curves, swing curves or focus-
exposure matrices, simulation parameters were automatically modified in a search to minimize the difference
between the simulated results and the experimental data.  The algorithms used were described and tested using
controlled datasets.  These dataset were generated from simulations but have controlled amounts of noise added.
By varying the noise level added the robustness and accuracy of the calibration procedure to experimental noise
was tested.  Results of these tuning procedures have been presented and the tuned set of parameters has been
shown to give good quantitative agreement with the correct values.
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Table 1. Input resist parameters used to generate test case data.

Resist Name SPR 500 UV6 PAR 710
Resist Vendor Shipley Shipley Sumitomo

Resist Type Positive
Conventional

Positive CA Positive CA

Developer Model Mack Mack Enhanced Mack
Development Rmax (nm/s) 120 4050 550
Development Rmin (nm/s) 0.1 0.4 0.05
Development Mth -100 0.7 -
Development Rresin - - 550
Development n 5.44 23 12
Development l - - 12
Surface Development Rate 0.1 0.005 0.195
Inhibition Depth (nm) 100 560 220
Thermal Decomp. Ea(kcal/mole) 34.32 0 0
Thermal Decomp. ln(Ar) (1/s) 36.8 -20 -20
PEB Diffusivity Ea (kcal/mole) 35 30 16.9
PEB Diffusivity Ln(Ar) (nm2/s) 49.53 41.3 24.52
Room Temperature Acid Diff. Length (nm) - 0 0
Amplification Reaction Order - 1 1
Relative Quencher Concentration - 0.098 0.125
PEB Amplification Ea (kcal/mole) - 32.221 16.946
PEB Amplification Ln(Ar) (1/s) - 36.923 18.987
PEB Bulk Acid Loss Ea (kcal/mole) - 0 0
PEB Bulk Acid Loss Ln(Ar) (1/s) - -20 -20
PEB Acid Evaporation Ea (kcal/mole) - 0 0
PEB Acid Evaporation Ln(Ar) (1/s) - -20 -20
PEB Diffusion-Controlled Reaction Ea
(kcal/mole)

- 0 0

PEB Diffusion-Controlled Reaction Ln(Ar)
(1/nm2)

- 20 20

A  (1/um) 0.84 0 0
B (1/um) 0.03 0.5 1.23
C (1/mJ) 0.016 0.063 0.0236
Unexposed Refractive Index 1.7098 1.746 1.699
Exposed Refractive Index 1.7098 1.746 1.699

Entries denote with a - are not used for this resist.
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Figure 4: Graph of CD swing curve test case data and simulation using unoptimized resist parameters. C =
0.015, A = 0.8, Unexposed Refractive Index= 1.80 . Simulation condition = 500nm nested line/space
using 365nm exposure at 0.5 NA and SPR500 resist parameters except as noted for C, A  and
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Figure 5: Graph of CD swing curve test case data and simulation using optimized resist parameters. C =
0.0161, A = 0.8633, Unexposed Refractive Index= 1.7121 .  Simulation condition = 500nm nested
line/space using 365nm exposure at 0.5 NA and SPR500 resist parameters except as noted for C, A
and nunexposed.  RMS added noise = 7.4 nm.



Table 2 : AutoTune starting, target and final resist parameter results for SPR500 CD swing curve data.

Parameter Name Starting
Value

Target
Value

Final
Value

Rate Constant C (cm2/mJ) 0.015 0.016 0.0161
Unexposed Refractive Index (real) 1.80 1.7098 1.7121
Abs. Parameter A (1/um) 0.80 0.84 0.8633
RMS χ2 Error 127.5 7.4 6.5
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Figure 6: Graph of parameter calibration error verses noise level in data.  Simulation condition = 500nm nested
line/space CD Swing Curve using 365nm exposure at 0.5 NA and SPR500 resist parameters. Resist
thickness = 800-1100 nm.
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Figure 7: Contrast curve graph of relative resist thickness remaining for SPR 500 test case data and simulation
using optimized develop parameters: Rmin = 0.14 nm/s, Rn= 5.44 .  Simulation condition = 365nm
exposure at 0.5 NA and SPR500 resist parameters except as noted for Rmin and Rn.
RMS added noise = 0.013.

Table 3 : AutoTune starting, target and final resist parameter results for SPR500 Contrast curve data.

Parameter Name Starting
Value

Target
Value

Final
Value

Develop Rmin 0.2 0.1 0.14
Develop N 6.0 5.44 5.44
RMS χ2 Error 0.071 0.013 0.013
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Figure 8: Contrast curve graph of relative resist thickness remaining for UV6 test case data and simulation
using optimized develop parameters: Rmin = 0.1 nm/s, Rn= 18.0 and Rmth=0.68.  Simulation condition
= 248nm exposure at 0.63 NA and UV6 resist parameters except as noted for Rmin , Rn. and Rmth .

RMS added noise = 0.022.

Table 4: AutoTune starting, target and final resist parameter results for UV6 Contrast curve data.

Parameter Name Starting
Value

Target
Value

Final
Value

Develop Rmin 0.2 0.4 0.1
Develop N 20 23 18
Develop Mth .6 0.7 0.68
RMS χ2 Error 0.29 0.022 0.026



Table 5: Relative correlation of conventional resist parameters for Focus-Exposure matrix data

A B C Diffusivity Rmax Rmin Rn Rmth

A - Severe Low Low Low Low Moderate Low

B - Low Low Low Low Moderate Low

C - Low Moderate Low Moderate Severe

Diffusivity - Low Low Low Low

Rmax - Low Low Low

Rmin - Low Low

Rn - Moderate

Rmth -

Table 6: Relative correlation of chemically amplified resist parameters for Focus-Exposure matrix data

A B C Diffusivity kamp Q Rmax Rmin Rn Rmth

A - Severe Low Low Low Low Low Low Moderate Low

B - Low Low Low Low Low Low Moderate Low

C - Low Severe Moderate Moderate Low Moderate Severe

Diffusivity - Low Moderate Low Low Low Low

kamp - Moderate Moderate Low Moderate Severe

Q - Low Low Moderate Moderate

Rmax - Low Low Low

Rmin - Low Low

Rn - Moderate

Rmth -
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Figure 9: Focus Exposure Matrix plot for UV6 test case data and simulation results using optimized develop
parameters: C = 0.0628, ln(ADiffusivity) = 41.36 nm/s , and Rn= 22.2.  Simulation condition = 225nm
L/S features using 248nm exposure at 0.63 NA and UV6 resist parameters except as noted for C,
ln(ADiffusivity), and Rmin . RMS added noise = 27.1 nm.

Table 7: AutoTune starting, target and final resist parameter results for UV6 Focus-Exposure matrix data.

Parameter Name Starting
Value

Target
Value

Final
Value

Rate Constant C (cm2/mJ) 0.06 0.063 0.0628
PEB Diffusivity Ln(Ar) (nm2/sec) 41.7 41.3 41.36
Development n 23.5 23 22.2
RMS χ2 Error 57.5 27.1 24.3
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Figure 10: Focus Exposure Matrix plot for PAR 710 test case data and simulation results using optimized resist
parameters: C = 0.0248, ln(ADiffusivity) = 24.66 nm/s , and Rl= 12.80.  Simulation condition = 130
nm/320 nm L/S features using 193nm exposure at 0.63 NA and PAR710 resist parameters except as
noted for C, ln(ADiffusivity), and Rmin  .  RMS added noise = 7.6 nm.

Table 8: AutoTune starting, target and final resist parameter results PAR710 Focus-Exposure matrix data.

Parameter Name Starting
Value

Target
Value

Final
Value

Rate Constant C (cm2/mJ) 0.025 0.0236 0.0248
PEB Diffusivity Ln(Ar) (nm2/sec) 24.5 24.52 24.66
Development l 14 12.0 12.80
RMS χ2 Error 36 7.6 6.2


