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Abstract 
 

The paper introduces an improved, physics-based function for fitting lithographic data from focus-
exposure matrices.  Unlike simple polynomial functions, the coefficients of this equation offer 
physical insight into the meaning and nature of the data.  Derivation of this equation from first 
principles of the physics of lithographic imaging is presented.  Examples based on typical 
experimental data are shown and the advantages of using a physics-based fitting function is 
described based on improved fitting and noise filtering. 
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I.  Introduction 
 Systematic analysis of focus-exposure matrix data is vital to the accurate determination of 
process windows and the calculation of depth of focus and best focus [1-3].  This analysis is 
generally accomplished by first fitting the data to a mathematical function, then using this function 
for process window determination.  The advantage of this approach is that the goodness of fit can be 
used as an objective means of data flier removal, and the natural “smoothness” of the fitting 
function can reduce the impact of experimental noise in the data on process window determination.  
Improper selection of the fitting function, however, can lead to other problems.  A function with 
two few parameters could eliminate real and significant patterns in the data.  A function with two 
many parameters can produce artifacts that do not actually exist in the data.  Choosing the correct 
function, with the correct number and type of fitting coefficients, is critical to proper process 
window determination. 
 The paper introduces an improved, physics-based function for fitting lithographic data from 
focus-exposure matrices.  Unlike simpler polynomial functions, the coefficients of this equation 
offer physical insight into the meaning and nature of the data.  Derivation of this equation from first 
principles of the physics of lithographic imaging is presented.  Numerous examples based on typical 
and unusual experimental data will be shown and the advantages of using a physics-based fitting 
function is described. 

II.  Polynomial Focus-Exposure Matrix Data Analysis 
 Since the effect of focus is dependent on exposure, the only way to judge the response of the process 
to focus is to simultaneously vary both focus and exposure in what is known as a focus-exposure matrix.  
Figure 1 shows a typical example of the output of a focus-exposure matrix using linewidth as the response 
(sidewall angle and resist loss can also be plotted in the same way) in what is called a Bossung plot [4].  As 
one can see, the shapes of the Bossung curves are quite complicated.  As a result, most efforts to fit this data 
to an equation has involved the use of polynomials in focus (F) and exposure (E) [1-3].  One very general 
expression is 
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Although this function has 20 adjustable coefficients, for most data sets good fits are obtained when a03, a22, 
a14, a23, a24, a33, and a34 are fixed and set to zero. 
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Figure 1. Example of the effect of focus and exposure on the resulting resist linewidth (symbols) 

and the best fit of this data (lines) to equation (1).   
 
 

III.  Curve Fitting and Statistical Analysis 
 Given a set of measured points (xi,yi) with xi the measurement position vector (i.e., input parameter 
values) and yi the measured value (output) for each measurement i, let F(x) be the function to be fitted.  The 
most common way to determine the coefficients is to calculate those coefficients that optimize the merit 
function  
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Summing the squares of the distances at each data point,  (chi-squared) measures the agreement of the 
fitting function and the data.  If the coefficients are chosen such that chi-squared is minimized, a function 
with the best average approximation for each data point is found.  
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 A standard statistical method to handle data with large measurement errors (“data flyers”) in a curve 
fit is to perform a second fit after removing those data points that exceed a certain deviation from the firstly 



obtained function.  In other words, an algorithm to optimize is used two times: first, it calculates the 
coefficients as mentioned above, using all data points in the analysis ranges.  Next, those data points whose 
deviation from the fitted function exceed a specified tolerance are removed and the algorithm is used again to 
calculate the final coefficients.  A good choice for the deviation tolerance is usually two times the standard 
deviation � from the first fit, where the standard deviation is defined as 
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and where N = number of data points.  However, another multiple of � or the direct selection of a deviation 
tolerance can be used. 
 
 Some data sets have a center in which the measured values have more importance than values at the 
edges of the data range.  Focus-Exposure matrices especially are measured around an estimated best focus 
and best exposure and the data closest to the center of the range is most important.  A way to represent this in 
the curve fit is to assign to each data point an individual weight wi.  By optimizing the weighted chi-square,  
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instead of chi-squared, the obtained function will tend to fit data points with more weight more closely than 
data points with less weight. 
 
 One approach to data weighting is weight each data point in inverse proportion to the uncertainty in 
the data. If repeat measurements are made, either on a single experimental observation or on repeat 
experiments, the statistics of the measurements will produce a standard deviation which can be used as an 
estimate of the uncertainty of the data point.  By weighting each point as one over the standard deviation of 
the measurement, the most certain points will have the greatest influence on the fit.  In practice, the out of 
focus features, with their poor resist profiles and higher sensitivity to process variations, will have greater 
uncertainty and thus will, in general, be weighted less. 

IV.  Improved Physics-Based Fitting Function 
 Using a simple polynomial to fit experimental focus-exposure CD data can have certain 
problems.  Using the polynomial function with two few parameters could eliminate real and 
significant patterns in the data.  Using the function with two many parameters can produce artifacts 
that do not actually exist in the data.  It is often difficult, over a wide range of data sets, to 
determine the best number of coefficients to use in the fit.  A physically based fitting function can 
aid in this decision, with the added benefit of physical meaning for the coefficients.  Additionally, a 
well designed physically based fitting function should allow the best fit with the fewest number of 
adjustable parameters, thus increasing the confidence in data flier removal and in preserving the 
integrity of true data patterns. 
 
 Consider first the aerial image of a simple pattern of lines and spaces of pitch p.  In one 
dimension (x), the aerial image can always be expressed as a Fourier series. 
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As the simplest example, consider equal lines and spaces of width w (= p/2).  Note that the derivation that 
follows is conceptually simpler for the case of equal lines and spaces, but the results are not limited to this 
case.  It will be convenient to replace the x position with a coordinate �w that is the deviation of x from the 
nominal line edge. 
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Writing equation (5) in terms of this new coordinate gives 
 

 ...cos
2

sin)( 210 ��
�

�
�
�

� �
��

�

�
�
�

� �
�	

w
w

w
wxI ��

�
��  (7) 

 
 Eventually we will use this equation to predict the behavior of feature size with focus and exposure.  
Since the features of interest will be near the nominal size, we will be most interested in equation (7) for the 
case of small �w/w, with values between –0.2 and 0.2 of greatest interest.  Thus, it will be reasonable to 
expand the sine and cosine terms of this equation in a Taylor series, keeping only the first few terms. 
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where the � coefficients are just linear combinations of the � terms (for example, �0 = �0-�2, etc.).  Although 
the exact values of the � and � terms are a function of the pitch, wavelength, numerical aperture, and partial 
coherence, for the simple coherent illumination case and equal lines and spaces �0 = 0.25, �1 = 1, �2 = 1, �3 = 
0.4112, etc. 
 
 Given an aerial image one can estimate the change in critical dimension (CD) as a function of 
exposure dose, E.  Using the simple approximation of a thin, infinite contrast photoresist, the photoresist will 
be removed whenever the dose exceeds some threshold dose, Eth.  In other words, 
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Keeping only through the second order terms in equation (8), one can solve for the resulting CD as a function 
of dose. 
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Again, for small �w/w the argument of the square root must necessarily take the form of one minus a small 
number.  Noting that the dose to size, Es, must be equal to Eth/�0 and taking the Taylor expansion of the 
square root, 
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Putting equation (11) into a more general form and keeping only the first N terms in the series, 
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In general, keeping three terms or less in this series gives very good fits to all data sets that we have 
observed.  For many data sets, keeping only the first term provides adequate results. 
 
 As an interesting aside, equation (10) simplifies to the following expression for the case of coherent 
illumination of small equal lines and spaces: 
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 Before continuing with the derivation and adding a focus dependence to this equation, it is 
instructive to consider the lithographic significance of the coefficients cn in equation (12).  The coefficient c1 
represents the slope, on a log-log scale, of the CD versus dose curve (and is thus the inverse of exposure 
latitude). 
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where NILS is the normalized image log-slope (the proportionality to NILS is in fact an equality in the limit 
of an infinite contrast photoresist).  The second order coefficient c2 represents the curvature of the log-CD 
versus log-dose curve, which is the change in exposure latitude with exposure dose. 
 
 By noting the relationship between c1 and NILS, it becomes possible to incorporate the impact of 
focus errors on CD.  It is well known that NILS falls off with increasing defocus.  For a small line/space 
pattern with coherent illumination, the behavior of NILS with defocus distance � is just 
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Keeping with our theme, we will again expand the cosine term with a Taylor series.  Thus, the first 
coefficient of equation (12) will become a function of focus as 
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Although in the ideal case equation (16) has only even powers of defocus distance, real lithographic results 
do exhibit some asymmetry with defocus.  Thus, a generalization of equation (16) would become 
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where F is the focal position, F* is best focus and the defocus distance is F-F*.  In general, M = 4 is 
sufficient to describe the vast majority of data sets and often the odd terms are very small or negligible.   
 
 Combining equations (12) and (17) and simplifying, 
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Equation (18) represents a physically based fitting function that has improved fitting performance over the 
original polynomial formulation of equation (1).  As others have noted [5,6], a CD variation with one over 
exposure dose is more physically accurate than assuming that CD is proportional to powers of dose. 

V.  Applying the Improved Fitting Function 
 One of the goals of using the fitting function described above rather than the original polynomial 
expression is to provide better fits of experimental data with fewer terms (and thus fewer adjustable fitting 
coefficients).  Doing so should lead to improved tolerance to statistical noise in the data and better data flyer 
removal decisions.  In order to test out these attributes of a data fitting function an ideal “noise free” data set 
was generated using simulation.  A typical 248nm chemically amplified resist process was used to create 
130nm dense line/space focus-exposure matrix data sets. 
 
 Figure 2 shows example fits of two data sets using the simple polynomial and the new physically 
based fitting function.  The two sets are identical except that the second data set used a wider range of focus.  
In each case the number of adjustable parameters in the two fitting functions was kept the same.  For the 
limited focus range case, the original polynomial with six terms fit the data with a one sigma goodness of fit 
of 3.49nm.  The physically based fitting function showed a goodness of fit of 1.47nm.  For the extended 
focus range case, using a greater number of terms in each expression to capture the more interesting focus 
behavior, the physically based function again resulted in a much smaller goodness of fit, 1.90nm versus 
4.26nm for the original polynomial.   
 
 To test the robustness of each expression with respect to noise in the data, random noise of various 
amounts was added to the first data set and fits using both fitting expressions were repeated.  To make the 
“noise” as realistic as possible, a metrology noise was added to the CD values itself, but noise was also added 
to the focus and exposure values in the data set.  Since a random number generator was used to generate the 
added noise, several noisy data sets were generated for each nominal magnitude of added noise and then the 
actual RMS noise amount was measured from the result.  Figure 3 shows example fits when 4.1nm RMS of 
random Gaussian noise was added to the data set.  The goodness of fits were 4.53nm and 4.24nm for the 
original and improved fitting functions, respectively.  Note that the advantage that the improved function 
enjoyed in terms of goodness of fit seems to be washed away by the noise in the data.  The effect of noise on 
the goodness of fit is explored in more detail in Figure 4, where the RMS magnitude of added noise is varied 
and the goodness of fit of each expression is plotted.  One can see that the six term physically based function 
out performs the six term simple polynomial at low noise levels, and in fact is comparable to a twelve term 
polynomial fit.  However, at high noise levels all functions give approximately the same goodness of fit. 
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Figure 2. Comparison of the original (a and c) to the new (b and d) fitting function using the same 

number of terms in each expression and “noise free” data generated by simulation. 
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Figure 3. Comparison of the original polynomial (a) to the physically based fitting function (b) to 

data with 4.1nm RMS of added noise. 
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Figure 4. Comparison of goodness of fits for the various fitting functions in the presence of noise 

added to the data. 



 But is the goodness of fit to noisy data the best metric of the appropriateness of a function to the task 
of data fitting?  A goal of using a fitting function to describe experimental data is to filter out noise and 
extract the true, core behavior present in the data.  In general one does not know the true behavior of 
experimental data in the absence of noise.  In our case, however, the data has been generated by adding a set 
amount of noise to an ideal noise free data set.  Thus, a more appropriate metric for how well the fitting 
function filters out random noise in our experiment would be to use an RMS model error to judge the result: 
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Note that the model is first fit to the noisy data in the standard way, by minimizing the goodness of fit to the 
noisy data.  Then, the effectiveness of the model is measured using the RMS model error of equation (18).   
 
 Figure 5 shows the results.  As can be seen the physically based model does a much better job of 
filtering out noise and keeping the RMS model error low in the presence of large amounts of noise.  In fact, 
the six term physically based function does a slightly better job of preserving the original noise free behavior 
than even the twelve term polynomial.  Adding more polynomial terms results in the fitting of noise, giving a 
goodness of fit that is below the amount of added RMS noise.  As a result, the higher term polynomial may 
in fact have a worse RMS model error than the six term polynomial when a high noise level is present. 
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Figure 5. Behavior of the various fitting functions in the presence of added noise using the RMS 

model error as the metric to judge the effectiveness of each model at filtering noise. 
 
 



VI.  Conclusions 
 
 Data analysis is an important part of the photolithography engineer’s job.  As linewidth control 
becomes more critical and process windows become smaller and smaller, accurate analysis of lithography 
process data becomes essential.  Automated, statistically sound techniques for analyzing data, removing bad 
data points, and extracting relevant lithographic information can dramatically improve one’s ability to 
monitor, characterize, and optimize a process. 
 
 This paper introduces an improved physics-based function for fitting lithographic data from focus-
exposure matrices.  Unlike simple polynomial functions, the coefficients of this equation offer physical 
insight into the meaning and nature of the data, based on its derivation from first principles of the physics of 
lithographic imaging.  The advantages of using a physics-based fitting function was shown based on 
improved fitting and noise filtering.  The improved physics based fitting function presented here has been 
incorporated into the software tool ProDATATM.   
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